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ASSTRACT

The paver prescnts an analysis of the
s*resses and strains in a fully vlastic, rotating,
annular disc that has initially uniform thickness
and 1s inade of a strain-hardening material. This
analysis 1s tased on Tresca's yield condition and
the associated flow rule, and assumes that the
elastic strains may be neglected in comparison to
the finite plastic strains thet are considered.
The bursting speed of the disc is expressed in the
form of a definite integral which involves the
strain-hardening function of the material. 1In
general, this integral will have tc be evaluated
numerically, but analytical evaluation is possible
for certain strain-hardening functions. 1In par-
ticuler, it is shown that for linear strain-harden-
ing instability can cccur only at the onset of
plastic flow, whereas for logarithmic strain-hard-
ening considerable plastic deformation of a stable
character may occur before the process of deforma-
ticen becomes unstable at the bursting speed.

*The results rresented in this paper were obtained in the course
of research sponsored bv the 0ffice of Haval Research under
Contract N7onr-35301,

lASQistant Frofessor of Apprlied Mathematics.

2Profc:sor cf Arolied Yechanics.
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NCTATIONS
initial inner and outer radii of disc,

instantaneous (true) rates of strain in the radial,
circumferential, and axial directlons,

initial uniform thickness of disc,
thickness of disc during plastic flow,

constants in logarithmic stress-strain relation
Eq. (16),

Qv alae mas bW %

radial distance of a particle initially at Ty

nominal stress in the radisl, circumferential, and
axial directions,

critical ncminal stress (initial yield stress),
radial disvlacement of a particle,

radial velocity of a particle,

nominal strains in the radial, circumferential, and
axial directicns,

critical nominal strain,

density of disc material,

true stress in the radiel, clrcumferential, and
axial directicns,

twice the critlical value of the true shearing stress,

angvlar speed cf the rotating disc.
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(I) Introduction

The analysis of stresses and strains in elastic or
partially plastic rotating discs has bean discussed repeatedly
{1 - 6 ]*. Ir these problems the strains are of the order of
magnitude of elastic strains and may therefore be treated as in-
finitesimal, As a consequence of this, the equations of equili-
brium may be satisfilel for the undeformed rather than the deformed
disc. Conslderable simplification of the mathematical wor» results
from this approximation, It would be unrealistic, however, to
treat the strains as infinitesimal when the bursting speed of a
strain-hardening plastic disc 1s to be determincd. In fact, as the
angular speed of such a disc is gradually incrcased, considerable
plastic deformation of a steble character may occur before the
process of deforme ion finally becomes unstable at the bursting
speed,

Since the ,rediction of the bursting speel of a strain-
hardening plastic disc recquires the consideraticn of finite plastic
strains, the analyst who has to forego the simplification resulting
from infinitesimal strains will look for other possibilities of
reducing the mathematical work. Thus, Zaid [ 7 Juscs a deformation
theory of pilasticity rather than a flow theory, in spite of his
realization of the questionable valuec of this typc of theory [& ].
The altcernative analysis offered in the present paper has recourse
to other simplifying assumptions., Firstly, it is azsumedi that the

elastic strains are negligible in comparison with thc plastic strains,

*Numbers in square brackets refer to the biblivgraphy at the end of
thc paver,
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Secondly, it is assumed that tha material of the Aice oheoye Trececa's

yicld condition [9 }Jand the asscclated flow rule [10 ].

(II) TR=SCA'S YINLD CONDITION AND FLOW RULE
In a rotationally symmetric stress ficld the principal

stresses arc the hoop stress ¢ , the radial stress or, and the

O’
axial stress o . The principal shecarirg streosses therefore are

v/

1 1 1 o o S
3 loo - ozl , glor = °z|’ and §|og - o, | . According to Tresca's

yield condition, none of these principal shnaring stresses can

exceed a critical value that depends on the stage of strain-harden-

o]

ing of the material. Moreover, for plastic fiow to occur, at least
onc of the principal shecaring stresses must have the critical value,

If only onc of tho principal shearing stresscs has the
critical valuec, thc flow rulc associated with Trcesca's yield condi-
tion stipulatos that the instantancous strain ratc corresponds to
pure shear in thc plane cf maximum shearing stress. The sense of
this shcar deformation must bc “appropriate", i.c.,, it must corres-
pond to the scnsce of the maximum shearing stress,

If two principal shecaring strcsses attain the critical
value, the flow rulc admits any sirain rate that can e considered
as resulting from the superposition of appropriatc states cf pure
shear in the two plancs cf critical shearineg stress. It should be
noted that in both cases the volume is prescorved during plastic
flow.

To er¥rr»ss this yield condition and flow rule znalvte

iczlly, donotc by ¢/7 the critical valuc of the shearing stress for

-4
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the considcrcd state of strain-hardening, and by cg, © and c,,

r!
thc instantancous ratcs of extcnsion in thz circumferential, radial,
and axial dircctions. ¥For thc statec of gecncralized plane strcoss
occurring in a thin. rotating disc, thc axial stresns o, i3 zcro.
Yercover, for an anralar disc of initially uniform thickneoss, 1t
may be tcntatively assumed that the hoop stress oO and tho radial
stress °r arc tcnsilc and that % everywherc ocxceceds or. Under
thcse circumstances, Tresca's yield condition and t.ac associated

flow rulc lcad to the foll(wing rclations:

d

"
Qa
\'4
Qa
v
O
-
Q
n
o
-

o) r (1)

¢p =0, €g=-c¢c, 2 C, (2)

Since de and ¢, are thus known cxplicitly, the number of unknown

functions 1s recduced and the analysis 1s thcreby simplificed.

To completc the description of the assumoed mechanical

behavior of thc disc material it is nceessary to formulatc a law

of strain-hardening. For simple tension, .ct the stress-strain
diagram have the gencral shape of the linc 0AB in Fig, 1. The
matcrial remains rigid until the tensile stress s recachces th? value
s*; during thc o<nsuing plastic flow, the stiress incroascs with the

strain € accordines to

& = TLE (3)

Thc rate of strain-hardcning ds/dc nas the initial valuc s*/e*
(sce Fig. 1) and decrcascs monotonically with incrcasing strain,
In *%q. (%), s and € should be interuroted 2z th: con-

venticonal stroess and strain conputcd with rafcrence to the criginsgl
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dimcnsions ¢f the test spceimen, On the other hand, the quantitics
%5y %y %,y % 2@y Cpy €, introduccd above shoulcd be interprctad as
the *ruc strosses and strain ratesj they are defined with respect
to thc dimcnsions in thc considercd state of dceformation.

It remains to discuss the application of the strain-
hardening law (3) to the states of stross and plastic flow occur-
ring in a rotating disc. The statc of plastic flow dcscribed by

(2) is ind>pcndent of the value of the intcrmediate principal stress

Gr.

Horcover, this typc of plastic flow 1s ,.ossiblc under Tresca's
flow rulc when the state of stress is simple tcnsion in the circum-
ferential direcction, It is thereforc rcasonablec to assume that

Eq. (3) can be applied to the problem on hand, providcd that s 1is
interpreted as the conventional hoop stross Sg and € as thc conven-
tional hoop strain €qe

(I11) FULLY PLASTIC DISC

Consider = rotating annular disc of the uniform initial
thickness hgy, the initial interier redius a,, and the initial ex-
terior radius t,y. From the clastic stress analysis it is known
that, as thc angular specd wof the disc is gradually increased,
the yicld 1limit is first rcached at the interior surface. At some-
what highcr speeds thoere will be an inner plastic rcogion surrounded
by an eclastic rcgion. Any flow that may occur in the plastic rcgion
would havc to satisfy (2). If v = v(r) is the distribution of the
radial velocity at a genceric instent during this plastic flow, the
radiel strain rate is ¢, = 8v/dr. Sirnce this must vanish according

r
to (2), thc radial vclocity must be indepcndent of r. Morcover,
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since all clastic strairs are nnglected, the radiz] disp,acement

u at the elastic-plastic interfacc is zero. This means that v and
hence the circumferential sirain rate eo = v/r rnust vanish through-
out the plastic region., This region thus remains rigid until the
elastic-plactic interface reaches th2 cxterior surface of the disc.

The angular speed w at which this occurs is given by (see Ref., 6,

p. 103, Eq. 9.53)

R . Bo - 3o (%)
2} p .3 e
bo - ap

where p 1s the density of the disc material. The fully plastic
stress distrioution at the onset of plastic flow is readily analyzed
(see Ref. 6, p. 104, Eq. 9.59 and Fig, 9.5). It is found that, at
this instant, the radial stress nowherc reaches the yield stress
regardless of the values of by > ay > 0. Thus, (1) and (2) aprly,
initially at least, during the ensuing plastic flow,

Let rg denote the initial radius of a particle that 1is
found at the radius r when the speed is w, If the radiasl displace-

ment is denoted by u, then

Here, r and u may be considered as functions of the independent
variavles r, and . (It is convenient to use o rather than w,
since the sense of the plzstic flow is inderendent of the sense of
rotation or the sign of the anguler speed.)

As has becn shown azbove, the first Eg. (2) requires

that all particles have the same radial velocity =2t zny given instant,

——— i 4 i S ————
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This implies that the radial displacement depends only on w? but
not on r_. Thus, the material phounded in the undefor—ied state by
the coaxial cylinders of radii r. and r, + dr, undergoes the radial
disnlacement u znd is then bounded by cylinders c¢f radii r = Iy + U

and r + dr = r + 3dr_ in the deformed state. Simultaneously, the

o
crizinal thickness hy decrcases to h., Becouse or the incompressi-

n

bility of the material, h,r,dr, = hrdr or, since dr = dr,

T r
h=hy 2@ =hy —20_, (6)
r r0+u

tress 3 1s transmitted across a

The true radial -

[&]

section that is vproportional to hr. Since hr = hgyr,, by (6), the
conventional and true radial stresses have the same value: o, = Sp.
The true circumferentisl stress %q is transmitted across a section
that 1s proportional to hdr; the cocrresponding value in the unde-
formed state is hodrC = hydr. The conventional circumferential

stress is therefore given by

=0, 0, (7)
Qho

&
Mo
)
A

by an equation of the form (3).

The equation of eauilibrium in the deforred state is

{(rho.)
_.————ar " - hdg - hpd’)'l‘e. (9)

Viith reference tc the undeforired state this equation may be written

as [follows.
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&{rysy) 2
—-—-—-aro = Sg - pw ro(ro + d)
= f{&) - pur_(ry + u). (10)

Since S, vanishes at the interior and exterior surfaces of the disc,

l.esy for ry = agand ry =D the integral of the right-hand side

o) o}

of (10) between the limitz aj and by must vanish, With a = b /ag,

n = u/a,, and § = ry/a,, this condition yields

2 2 na
£ AW J1 f(n/8)ag
e - 3 5 (11)

2(@” - 1) =+ 3n(a2 - 1)

For a Ynown strain-hardening function f znd given
initial dimensions, the right-hand side of (11) must be evaluatc!,
analytically or numerically, for a set of va’ues of n = u/ao. Lach
such evaluaticn furnishes onc point of the plot & V. e FoOr
n = 0, in particular, 1(0) = s* and the integral in (11) equals
(a = 1)s*, Equation (11) therefore yields the correcct value (&)
for the angular speed at wvhich nlastic flow begins,

As long as an incrcase in W’ is required to producc an
incrcases in u thc considered plastlic flow is stable, The bursting
speed W, corraosponds to the maximum of the curve w2 Vs. U.

The precelding analysis is based on the assumption that
the radial stress L is smaller than the circumfercential stro:ze %q-
A formula for the maximum radial strecs occurring at a given sreed
w can be obtaired by carryinz out the differ ntiation on the left-

hand side of (1C) and cquating 8s./0r  to zcro. Thus,
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max s = s. -{)U2T (r + u). (12)
r ¢ oo 3

where rj is now the initlal value of the radius at whith the maximum
of syp occurs. TFquation (12) shows that oven this maximum of S, 43
smaller than the corresponding valuc of Sge  liow, Sp = S, and

g > Sgy 0y Eq. (7). The maximum of ¢, is thereforc smaller than

the corresponding value of Og.

(IV) LINEAR STRAIN-HARDTVING
As 2 rule, thec integral in (11) must be cvaluated
numerically, but strain-hardening laws can be devised that male
analytical evaluation pcssible, The simplest law of this ¥ind is

representcd by the line OAC of Fig. 1. With

f(e) = s*x(1 + e/e*), (13)

Eq. (11) yields

pagu2 a =1+ (n/e*) log a

Zs+ ° ; (14)
S 2(03 - 1) 4+ 3q(a27- 1)

Differentiation of (14) with respect to N shows that d(w2)/dq — )

when

€*=ﬂ°2+0 + 1) loga

a® = 1)

Bquation (15) establishes the critical rate of linear
strain-hardening, For a given value of a = b,/z2,, the strain-hord-
ening paramctor e¢* (seec Fig, 1) must not cxceed the value (15) if
plastic Jeforration is to be stadle., In Flg, 2, €* as glven by

(19) is plotted versus a, Asa-— 1, i.e,, as the width of th"c
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annulus tends towards zero, the critical value of e* tends touwards
1. This result is familiar from Laczlo's paper (11 ],

The sign cof d(wz)/dn as found from (14) does not change
with increasing n, This means that for linear strain-hardening in-
stability can cccur only at the onset of plastic flow. A disc that
starts to flow in a stable manner will continue to do so as the

anzular speced 1is increascd,

(V) LOGARITHMIC STRAIN-HARDTINING
Another strain-hardening law for which the integral in

(11) can be evaluated analytically is given by
f(e) = %X log (4 + me), (16

where k, 4, and m are constants. These may be chosen so as to fit
an experimental stress-strain curve. With the function (15), Ea.
(11) yields

pa%&ua (ad + mn)log(ad + mn) = (L + mn)logd + mn) - af log a
ck

(17)

Figurc 3 shows the actnal stress-strain curve* for

2(‘13 - 1) + 3q(a2 - 1)

AL 255-T4 in sinple tension (full line) and the curve obtained from
Eq. (16) with X = 9,780 psi, 4 = 77, m = 8,060, Figure 4 shows the
left-hand side of (17) vs. n = u/ay for a= by/a, = 2. The bursting
specd Wy is obtained from the maximum point of this curve., A5 can

be scen, the disc bursts for n = N, = 0.25, Since n = u/ao, and

*The authors arc indebted to Profcssor B, D!'ippolonia, Carnegic
Institute of Techrology, Fittsburgh, Ta,, for the usc of this curve,
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€ =u/ry, € =1 a/ry; and since the maximum nominal hoop strain
occurs at ry = a_, the disc would burst at a hoop strain of 25%.
¥rom Fig, 3, it can be scen however, that this hoop strain is be-
yond the range of validity of the cxperimental stress-strain curve,
A more realistic picturc is obtained by intcgrating the right-hand
side of (11) numerically, using thc experimental stress-strain
curve in Tig. 3 (full line) as s = fle), Figurc 9 shows a plot of
pa§u2/6s* (where s* 1s as indicated in Fig. 3) vs. n, fora = 2,

Again, the bursting spced, w is cbtained from thc maximum point

2’
of this curve, which occurs at n = N, = 0.14, and thus at a maximum
nominal hoop strain of 14%., This maximum strain occurs before
nccking takes place in the tcst speecimen, and thus 1s in the range
of validity of the experimental stress-strain curve. The results
Just obtained illustrate the fact that, for logarithmic strain-
hardening as well as actual strain-hardcening of a similar type,

there is a considerabic range of stable plastic deformzation before

bursting occurs.
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